By Topic

Optimizing the performance of a surface mount placement machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ellis, K.P. ; Grado Dept. of Ind. & Syst. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Vittes, F.J. ; Kobza, J.E.

Process planning is an important and integral part of effectively operating a printed circuit board (PCB) assembly system. A PCB assembly system generally consists of different types of placement machines, testing equipment, and material handling equipment. This research develops a new solution approach to determine the component placement sequence and feeder arrangement for a turret style surface mount-placement machine often used in PCB assembly systems. This solution approach can be integrated into a process planning system to reduce assembly time and improve productivity. The algorithm consists of a construction procedure that uses a set of rules to generate an initial component placement sequence and feeder arrangement along with an improvement procedure to improve the initial solution. An industrial case study conducted at Ericsson, Inc., using a Fuji CP4-3 machine and actual PCB data, is presented to demonstrate the performance of the proposed solution approach. The solutions obtained using the proposed solution approach are compared to those obtained using state of the art PCB assembly process optimization software. For all PCBs in the case study, the proposed solution approach yielded lower placement times than the commercial software, thus generating additional valuable production capacity. This research is applicable for both researchers and practitioners in printed circuit board assembly systems

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:24 ,  Issue: 3 )