Cart (Loading....) | Create Account
Close category search window
 

Significant performance advantage of electroabsorption modulator integrated distributed feedback laser (EML) transmitter in transporting multicarrier QAM signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chand, Naresh ; Photonics Res. Lab., Agere Syst., Murray Hill, NJ, USA ; Bakker, L. ; van Veen, D. ; Yadvish, R.D.

Data are presented that show that, for transporting quadrature amplitude modulated (QAM) radiofrequency (RF) subcarriers in suboctave frequency range, electroabsorption modulator integrated distributed feedback lasers (EMLs) can he modulated with significantly higher (2.5 times) modulation index without any in-band signal distortion as compared to the directly or externally modulated (using LiNbO3 MZ modulator) distributed feedback (DFB) laser transmitters in the 1.55-μm band. This occurs when the selection of frequency range and biasing the modulator section of an EML is such that the third-order intermodulation distortion is suppressed and the second-order distortion is outside the in-band frequency range. We have used an equivalent of 64- and 256-QAM 40 carriers in 550-800 MHz with the test carrier modulated with 5.063 M symbols per second. For a given bit error rate (BER), the receiver sensitivity was as much as 4 dB (optical) higher with an EML-based transmitter compared to all other transmitters. The results are presented for QAM signals but they are equally applicable for other formats of digital modulation of RF carriers, such as quadrature phase shift keying (QPSK) in suboctave frequency range

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 10 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.