By Topic

A graph-based approach for discovering various types of association rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Show-Jane Yen ; Dept. of Comput. Sci. & Inf. Eng., Fu Jen Catholic Univ., Taipei, Taiwan ; Chen, A.L.P.

Mining association rules is an important task for knowledge discovery. We can analyze past transaction data to discover customer behaviors such that the quality of business decisions can be improved. Various types of association rules may exist in a large database of customer transactions. The strategy of mining association rules focuses on discovering large item sets, which are groups of items which appear together in a sufficient number of transactions. We propose a graph-based approach to generate various types of association rules from a large database of customer transactions. This approach scans the database once to construct an association graph and then traverses the graph to generate all large item sets. Empirical evaluations show that our algorithms outperform other algorithms which need to make multiple passes over the database

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 5 )