By Topic

A proposal for a heterogeneous cluster ScaLAPACK (dense linear solvers)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Beaumont, O. ; LIP, UMR CNRS-ENS, Ecole Normale Superieure de Lyon, France ; Boudet, V. ; Petitet, A. ; Rastello, F.
more authors

The authors study the implementation of dense linear algebra kernels, such as matrix multiplication or linear system solvers, on heterogeneous networks of workstations. The uniform block-cyclic data distribution scheme commonly used for homogeneous collections of processors limits the performance of these linear algebra kernels on heterogeneous grids to the speed of the slowest processor. We present and study more sophisticated data allocation strategies that balance the load on heterogeneous platforms with respect to the performance of the processors. When targeting unidimensional grids, the load-balancing problem can be solved rather easily. When targeting two-dimensional grids, which are the key to scalability and efficiency for numerical kernels, the problem turns out to be surprisingly difficult. We formally state the 2D load-balancing problem and prove its NP-completeness. Next, we introduce a data allocation heuristic, which turns out to be very satisfactory: Its practical usefulness is demonstrated by MPI experiments conducted with a heterogeneous network of workstations

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 10 )