By Topic

Hyperion project follows sun

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Describes the field testing of the Hyperion robotics project which uses the concept of sun-synchronous navigation. Hyperion is made of aluminum tubing and has four, wheels on two axles. Each wheel has a motor, and the front axle has a passive joint that can roll and yaw relative to the back end. Hyperion steers by driving the wheels at different speeds, and the passive front-axle joint turns the robot in arcs. The 1.5 meter-high front axle gives the robot's digital cameras and laser scanner a view of surrounding terrain; the latter helps it detect close-range obstacles. A third panoramic camera offers remote observers a view of its surroundings. All other robot components are housed in the body, which is mounted between the axles. Hyperion uses a pair of global positioning system receivers and an odometric system to determine its position and orientation and wheel-based odometric:sensing to estimate motion. Odometry also enables positioning and orientation on other planets, where the robot could use things such as a star, sun, or terrain landmark in place of GPS. Multiple onboard sensors act as Hyperion's health-monitoring and fault-detection system, checking everything from computer processes and laser scanners to a sensor suite that monitors the rate at which the system receives GPS information. The planner combines a priori knowledge of terrain, planetary rotation, sun location, solar flux predictions, and predictions of rover capability.

Published in:

IEEE Intelligent Systems  (Volume:16 ,  Issue: 5 )