Cart (Loading....) | Create Account
Close category search window
 

Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jonghun Park ; Sch. of Inf. Sci. & Technol., Penn State Univ., University Park, PA, USA ; Reveliotis, S.A.

Considers the deadlock avoidance problem for the class of conjunctive/disjunctive (sequential) resource allocation systems (C/D-RAS), which allows for multiple resource acquisitions and flexible routings. First, a siphon-based characterization for the liveness of Petri nets (PNs) modeling C/D-RAS is developed, and subsequently, this characterization facilitates the development of a polynomial-complexity deadlock avoidance policy (DAP) that is appropriate for the considered RAS class. The resulting policy is characterized as C/D-RUN. The last part of the paper exploits the aforementioned siphon-based characterization of C/D-RAS liveness, in order to develop a sufficiency condition for C/D-RAS liveness that takes the convenient form of a mixed integer programming (MIP) formulation. The availability of this MIP formulation subsequently allows the “automatic” correctness verification of any tentative C/D-RAS DAP for which the controlled system behavior remains in the class of PNs modeling C/D-RAS, and the effective flexibility enhancement of the aforementioned C/D-RUN DAP implementations. Finally, we notice that, in addition to extending and complementing the current theory on deadlock-free sequential resource allocation to the most powerful class of C/D-RAS, the presented results also (i) nontrivially generalize important concepts and techniques of ordinary PN structural analysis to the broader class of nonordinary PNs, while (ii) from a practical standpoint, they can find direct application in the (work-) flow management of modern production, service and/or transportation environments

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 10 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.