By Topic

Automatic gait recognition via statistical approaches for extended template features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Huang, P.S. ; Dept. of Electr. Eng., Chung Cheng Inst. of Technol., Taoyuan, Taiwan

A gait recognition system using extended template features is presented. A proposed statistical approach is applied for feature extraction from spatial and temporal templates. This method can be used to reduce data dimensionality and to optimize the class separability of different gait sequences simultaneously. Dimensionality reduction is achieved by template extraction followed by principal component analysis. Gait recognition is achieved in the canonical space using a measure of accumulated distance as the metric. By incorporating spatial and temporal information into an extended feature, gait recognition becomes more robust and accurate than using spatial or temporal features alone

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 5 )