By Topic

A systematic neuro-fuzzy modeling framework with application to material property prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min-You Chen ; Dept. of Autom. Control & Syst. Eng., Sheffield Univ., UK ; Linkens, D.A.

A systematic neural-fuzzy modeling framework that includes the initial fuzzy model self-generation, significant input selection, partition validation, parameter optimization, and rule-base simplification is proposed in this paper. In this framework, the structure identification and parameter optimization are carried out automatically and efficiently by the combined use of a sell-organization network, fuzzy clustering, adaptive back-propagation learning, and similarity analysis-based model simplification. The proposed neuro-fuzzy modeling approach has been used for nonlinear system identification and mechanical property prediction in hot-rolled steels from construct composition and microstructure data. Experimental studies demonstrate that the predicted mechanical properties have a good agreement with the measured data by using the elicited fuzzy model with a small number of rules

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 5 )