By Topic

Characterization and modeling of multiple coupled on-chip interconnects on silicon substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zheng, J. ; Dept. of Electr. & Comput. Eng., Oregon State Univ., Corvallis, OR, USA ; Tripathi, V.K. ; Weisshaar, A.

A quasi-magnetostatic integral formulation approach is applied to compute the frequency-dependent series resistance and inductance parameters for coupled microstrip on-chip interconnects on silicon. The method is based on the simultaneous discretization of interconnect conductors and silicon substrate, and takes into account the substrate skin effect (eddy currents), as well as the conductor skin and proximity effects. An efficient equivalent-circuit model based on “effective substrate current loops” is extracted from the frequency-dependent R and L parameters for a class of coupled microstrip-type on-chip interconnects. The frequency response of the proposed model consisting of only passive R, L elements agrees well with the broad-band characteristics of the distributed resistance and inductance parameters of the interconnect obtained by electromagnetic simulation. Model extraction results are presented for asymmetric coupled interconnects to demonstrate the proposed method

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 10 )