By Topic

A finite ground coplanar line-to-silicon micromachined waveguide transition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Becker, J.P. ; Dept. of Electr. & Comput. Eng., Michigan Univ., Ann Arbor, MI, USA ; Yongshik Lee ; East, J.R. ; Katehi, L.P.B.

Circuits operating in the terahertz frequency range have traditionally been developed using hollow metal waveguides, which, due to the small wavelength at these operating frequencies, must be correspondingly small in cross section. As a result of the high cost of conventional precision machining of such small waveguides, alternate fabrication methods continue to be explored. Silicon micromachining has been suggested as a potential means to produce waveguides in a more cost-effective manner for operation at these frequencies. This paper presents a transition structure that couples the popular finite ground coplanar transmission line to a W-band silicon micromachined waveguide, forming a fully micromachined module. The waveguide is formed via bulk micromachining using a wet etchant, resulting in a diamond cross section. The consequences of utilizing a diamond waveguide in place of the more common rectangular waveguide are considered and potential means of developing rectangular-walled waveguides in silicon are noted. A Ka-band microwave model of a similar transition to a conventional rectangular waveguide is also demonstrated

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 10 )