By Topic

Observations on using genetic algorithms for dynamic load-balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zomaya, A.Y. ; Dept. of Electr. & Electron. Eng., Western Australia Univ., Nedlands, WA, Australia ; Yee-Hwei Teh

Load-balancing problems arise in many applications, but, most importantly, they play a special role in the operation of parallel and distributed computing systems. Load-balancing deals with partitioning a program into smaller tasks that can be executed concurrently and mapping each of these tasks to a computational resource such as a processor (e.g., in a multiprocessor system) or a computer (e.g., in a computer network). By developing strategies that can map these tasks to processors in a way that balances out the load, the total processing time will be reduced with improved processor utilization. Most of the research on load-balancing focused on static scenarios that, in most of the cases, employ heuristic methods. However, genetic algorithms have gained immense popularity over the last few years as a robust and easily adaptable search technique. The work proposed here investigates how a genetic algorithm can be employed to solve the dynamic load-balancing problem. A dynamic load-balancing algorithm is developed whereby optimal or near-optimal task allocations can “evolve” during the operation of the parallel computing system. The algorithm considers other load-balancing issues such as threshold policies, information exchange criteria, and interprocessor communication. The effects of these and other issues on the success of the genetic-based load-balancing algorithm as compared with the first-fit heuristic are outlined

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 9 )