By Topic

Robust average current-mode control of multimodule parallel DC-DC PWM converter systems with improved dynamic response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garcera, G. ; Dept. de Ingenieria Electron., Univ. Politecnica de Valencia, Spain ; Pascual, M. ; Figueres, E.

This paper presents a novel average current-mode control (ACC) strategy for the control of multimodule parallel pulsewidth modulation DC-DC converters, which represents a drastic improvement over conventional ACC. This new method consists of the addition of an auxiliary controller into the control loop, besides the current and voltage regulators. The reference-model-based auxiliary controller improves the robustness of the ACC dynamics in buck-derived distributed power systems, preserving loop gain crossover frequency and stability margins over significant changes of the number of connected modules, the load and the line voltage. Moreover, this control scheme shows much better disturbance rejection properties, i.e., closed-loop output impedance and audiosusceptibility, than conventional ACC. From a control theory point of view robust performance is achieved, preserving stability. A multimodule buck prototype has been experimentally tested with different numbers of modules on stream, line, and load conditions, including discontinuous conduction mode. Measurements of the small-signal frequency response of the converter have been carried out, showing the improvement achieved by the proposed control scheme. The empirical large-signal response of the converter under load steps is also shown in order to validate the concept

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 5 )