By Topic

Worst and best irredundant sum-of-products expressions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sasao, T. ; Dept. of Comput. Sci. & Electron., Kyushu Inst. of Technol., Iizuka, Japan ; Butler, J.T.

In an irredundant sum-of-products expression (ISOP), each product is a prime implicant (Pl) and no product can be deleted without changing the function. Among the ISOPs for some function f, a worst ISOP (WSOP) is an ISOP with the largest number of Pls and a minimum ISOP (MSOP) is one with the smallest number. We show a class of functions for which the Minato-Morreale ISOP algorithm produces WSOPs. Since the ratio of the size of the WSOP to the size of the MSOP is arbitrarily large when it, the number of variables, is unbounded, the Minato-Morreale algorithm can produce results that are very far from minimum. We present a class of multiple-output functions whose WSOP size is also much larger than its MSOP size. For a set of benchmark functions, we show the distribution of ISOPs to the number of Pls. Among this set are functions where the MSOPs have almost as many Pls as do the WSOPs. These functions are known to be easy to minimize. Also, there are benchmark functions where the fraction of ISOPs that are MSOPs is small and MSOPs have many fewer Pls than the WSOPs. Such functions are known to be hard to minimize. For one class of functions, we show that the fraction of ISOPs that are MSOPs approaches 0 as n approaches infinity, suggesting that such functions are hard to minimize

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 9 )