By Topic

Stochastic neural computation. II. Soft competitive learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brown, B.D. ; Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man., Canada ; Card, H.C.

For pt. I see ibid., p.891-905. An investigation has been made into the use of stochastic arithmetic to implement an artificial neural network solution to a typical pattern recognition application. Optical character recognition is performed on very noisy characters in the E-13B MICR font. The artificial neural network is composed of two layers, the first layer being a set of soft competitive learning subnetworks and the second a set of fully connected linear output neurons. The observed number of clock cycles in the stochastic case represents an order of magnitude improvement over the floating-point implementation assuming clock frequency parity. Network generalization capabilities were also compared based on the network squared error as a function of the amount of noise added to the input patterns. The stochastic network maintains a squared error within 10 percent of that of the floating-point implementation for a wide range of noise levels

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 9 )