By Topic

Partial filling of a quantum dot intermediate band for solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marti, Antonio ; Inst. de Energia Solar, Univ. Politecnica de Madrid, Spain ; Cuadra, L. ; Luque, Antonio

This paper describes how to partially fill the intermediate band formed by the confined states of quantum dots with electrons. Efficiencies of up to 63.2% have been calculated in ideal cases for solar cells with this intermediate band. In order to achieve this, the barrier region is n-doped so that the electrons delivered by the donors fall into the otherwise empty intermediate band states. This method produces a fully space-charged structure whose electrostatic properties are studied in this paper, thus confirming the feasibility of the proposed method. Partial filling of the intermediate band is necessary to provide strong absorption in transitions from it to both the valence and the conduction bands

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 10 )