By Topic

High-power 1.55-μm mass-transport-grating DFB lasers for externally modulated systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Inaba, Y. ; Semicond. Device Res. Center, Matsushita Electron. Corp., Osaka, Japan ; Nakayama, H. ; Kito, M. ; Ishino, M.
more authors

High-output-power operation of 1.55-μm-wavelength distributed-feedback (DFB) lasers with a novel mass-transport grating (MTG) structure which is composed of InAsP buried with InP are reported. To improve high output power characteristics, we have investigated the influence of the width of the active layer on the light output power and the spectral linewidth at high injection current. It is confirmed that the increase of the active layer width is effective to realize high output power and to reduce the linewidth power product. The fabricated lasers show high single-longitudinal-mode output power of 180 mW, which is the highest value reported for 1.55-μm DFB lasers. They also exhibit narrow spectral linewidths less than 0.3 MHz and low noise characteristics of -159 dB/Hz. Moreover, we have obtained the mean time to failure of longer than 105 h with a lifetime test over 200 h at 50°C

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:7 ,  Issue: 2 )