By Topic

How to launch 1 W into single-mode fiber from a single 1.48-μm flared resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
S. Delepine ; OPTO+, Alcatel Corp. Res. Centre, Marcoussis, France ; F. Gerard ; A. Pinquier ; T. Fillion
more authors

The operation of 1.48-μm flared resonators is thoroughly studied, both experimentally and theoretically: the accurate determination of threshold condition as a function of geometrical and material parameters, the study of emission spectra and astigmatism variations as a function of optical power level allow us to better understand the may these devices operate. The origin of modal distortion is then analyzed, and an original solution is proposed to increase the single-transverse-mode power at high injection level: it is shown that implanting the multiple-quantum-well active layer with protons efficiently enhances the filtering capability of the overall structure, and particularly that of the ridge waveguide, by bringing additional lateral absorption losses. The explanation of the filtering mechanism is successfully confirmed by simulations using the beam-propagation method. This technique finally allowed more than 1.3 W of continuous wave (CW) diffraction-limited power at 6 A. Low-modal-gain structures were then realized to reduce modal optical absorption in the implanted structures with a view to maintaining a high external efficiency and a reduced vertical divergence. Finally, a three-lens coupling system was designed and the effects of optical feedback minimized so as to obtain a very high coupling efficiency: with an improved laser design, 1.12 W of CW power were then coupled into single-mode fiber at 6.6 A, which represents 65% of the power emitted by the laser chip

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:7 ,  Issue: 2 )