By Topic

On-line handwritten signature verification using wavelets and back-propagation neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Lejtman, D.Z. ; Sch. of Comput. & Inf. Sci., Univ. of South Australia, SA, Australia ; George, S.E.

This paper investigates dynamic handwritten signature verification (HSV) using the wavelet transform with verification by the backpropagation neural network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic, or on-line, HSV. Using a database of dynamic signatures collected from 41 Chinese writers and 7 from Latin script we extract features (including pen pressure, x and y velocity, angle of pen movement and angular velocity) from the signature and apply the Daubechies-6 wavelet transform using coefficients as input to a NN which learns to verify signatures with a False Rejection Rate (FRR) of 0.0% and False Acceptance Rate (FAR) less of than 0.1

Published in:

Document Analysis and Recognition, 2001. Proceedings. Sixth International Conference on

Date of Conference: