By Topic

An on-chip march pattern generator for testing embedded memory cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Lun Wang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Kuen-Jong Lee ; Jhing-Fa Wang

In this correspondence, we propose an effective approach to integrate 40 existing march algorithms into an embedded low hardware overhead test pattern generator to test the various kinds of word-oriented memory cores. Each march algorithm is characterized by several sets of up/down address orders, read/write signals, read/write data, and lengths of read/write operations. These characteristics are stored on chip so that any desired march algorithm can be generated with very little external control. An efficient procedure to reduce the memory storage for these characteristics is presented. We use only two programmable cyclic shift registers to generate the various read/write signals and data within the steps of the algorithms. Therefore, the proposed pattern generator is capable of generating any march algorithm with small area overhead.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:9 ,  Issue: 5 )