By Topic

Discrete-time battery models for system-level low-power design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Benini, L. ; Dipartimento di Elettronica, Bologna Univ., Italy ; Castelli, G. ; Macii, A. ; Macii, E.
more authors

For portable applications, long battery lifetime is the ultimate design goal. Therefore, the availability of battery and voltage converter models providing accurate estimates of battery lifetime is key for system-level low-power design frameworks. In this paper, we introduce a discrete-time model for the complete power supply subsystem that closely approximates the behavior of its circuit-level continuous-time counterpart. The model is abstract and efficient enough to enable event-driven simulation of digital systems described at a very high level of abstraction and that includes, among their components, also the power supply. The model gives the designer the possibility of estimating battery lifetime during system-level design exploration, as shown by the results we have collected on meaningful case studies. In addition, it is flexible and it can thus be employed for different battery chemistries.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 5 )