By Topic

Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ferrari, R.J. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Rangayyan, R.M. ; Desautels, J.E.L. ; Frere, A.F.

This paper presents a procedure for the analysis of left-right (bilateral) asymmetry in mammograms. The procedure is based upon the detection of linear directional components by using a multiresolution representation based upon Gabor wavelets. A particular wavelet scheme with two-dimensional Gabor filters as elementary functions with varying tuning frequency and orientation, specifically designed in order to reduce the redundancy in the wavelet-based representation, is applied to the given image. The filter responses for different scales and orientation are analyzed by using the Karhunen-Loeve (KL) transform and Otsu's method of thresholding. The KL transform is applied to select the principal components of the filter responses, preserving only the most relevant directional elements appearing at all scales. The selected principal components, thresholded by using Otsu's method, are used to obtain the magnitude and phase of the directional components of the image. Rose diagrams computed from the phase images and statistical measures computed thereof are used for quantitative and qualitative analysis of the oriented patterns. A total of 80 images from 20 normal cases, 14 asymmetric cases, and six architectural distortion cases from the Mini-MIAS (Mammographic Image Analysis Society, London, U.K.) database were used to evaluate the scheme using the leave-one-out methodology. Average classification accuracy rates of up to 74.4% were achieved.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:20 ,  Issue: 9 )