By Topic

A dual-color injection laser based on intra- and inter-band carrier transitions in semiconductor quantum wells or quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A new type of semiconductor injection laser capable of simultaneously generating radiation in the mid-infrared (MIR) (λ~10 μm) and near-infrared (NIR) (λ~0.9 μm) spectral regions is proposed. The MIR emission is a result of intersubband (intraband) electron transitions within a three-level conduction band in a quantum well or a quantum dot. The NIR emission, on the other hand, is due to conventional interband recombination of injected electrons and holes into the conduction and valence bands, respectively. The conditions for population inversion in the intersubband emission process are determined by an appropriately engineered energy structure for a three-level system in the conduction band of a quantum well or dot structure: for the quantum-well-based system, the structure has an asymmetric funnel shape to provide long electron-phonon lifetime at the third (top) energy level. Under high carrier injection, NIR interband emission depopulates the conduction ground level of the quantum well, thereby stabilizing the electron concentration at this level-a necessary condition fur the operation of the MIR laser. This paper discusses the calculation of the population inversion conditions, the requisite gain, and threshold current for MIR laser operation. We also present a preliminary design of the laser structure with a composite waveguide that accommodates both mid- and NIR stimulated emission

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 10 )