By Topic

High-speed mid-IR modulator using Stark shift in step quantum wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Holmstrom, P. ; Dept. of Microelectron. & Inf. Technol., R. Inst. of Technol., Kista, Sweden

We show in calculations that there is a capability for high speeds with a low applied voltage in modulators based on intersubband transitions in step quantum wells (QWs). A waveguide based on surface plasmons is assumed to achieve the necessary tight confinement of the optical field. In a structure with 8 GaInAs-AlGaInAs-AlInAs step QWs, we obtain a device capacitance of 14 fF corresponding to a RC limitation of electrical f3 dB=190 GHz. The extinction ratio of 6.6-μm light is 10 dB at an applied voltage of 0.9 V and T=300 K. By simple reasoning, we find that the device capacitance is approximately proportional to the absorption linewidth cubed when the linewidth is considered in the device design. Thus, the linewidth is very decisive for the modulation speed. We propose to place the dopants asymmetrically in the barriers in order to reduce broadening caused by doping induced potential fluctuations. In addition, the doping levels in the outermost barriers of the multi-QW structure are proposed to be reduced and asymmetrical, in order to achieve a uniform electric field over the step QWs, which is shown to increase the achievable f3 dB very markedly

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 10 )