Cart (Loading....) | Create Account
Close category search window

Dynamic load balancing for structured adaptive mesh refinement applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiling Lan ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Taylor, V.E. ; Bryan, G.

Adaptive Mesh Refinement (AMR) is a type of multiscale algorithm that achieves high resolution in localized regions of dynamic, multidimensional numerical simulations. One of the key issues related to AMR is dynamic load balancing (DLB), which allows large-scale adaptive applications to run efficiently on parallel systems. In this paper we present an efficient DLB scheme for structured AMR (SAMR) applications. Our DLB scheme combines a grid-splitting technique with direct grid movements (e.g., direct movement from an overloaded processor to an underloaded proces sor), for which the objective is to efficiently redistribute workload among all the processors so as to reduce the parallel execution time. The potential benefits of our DLB scheme are examined by incorporating our techniques into a parallel, cosmological application that uses SAMR techniques. Experiments show that by using our scheme, the parallel execution time can be reduced by up to 47% and the quality of load-balancing can be improved by a factor of four.

Published in:

Parallel Processing, 2001. International Conference on

Date of Conference:

3-7 Sept. 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.