By Topic

Stochastic scheduling of a meta-task in heterogeneous distributed computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dogan, A. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Ozguner, F.

The fact that the scheduling problem is NP-complete has motivated the development of many heuristic scheduling algorithms. These heuristic algorithms often neglect the stochastic nature of tasks' execution times. Contrary to existing heuristics, in this study, tasks' execution times are treated as random variables and the stochastic scheduling problem is formulated accordingly. Using this formulation, it is theoretically shown that current deterministic scheduling algorithms may perform poorly in a real computing environment. In order to support the theoretical foundations, a genetic algorithm based scheduling algorithm is devised to make scheduling decisions either stochastically or deterministically by changing only the fitness function of chromosomes. The simulation studies conducted show that deploying a stochastic scheduling algorithm instead of a deterministic one can improve the performance of meta-tasks in a heterogeneous distributed computing system

Published in:

Parallel Processing Workshops, 2001. International Conference on

Date of Conference: