Cart (Loading....) | Create Account
Close category search window
 

Errors-in-variables modeling in optical flow estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ng, L. ; Dept. of Electron., Macquarie Univ., Sydney, NSW, Australia ; Solo, V.

Gradient-based optical flow estimation methods typically do not take into account errors in the spatial derivative estimates. The presence of these errors causes an errors-in-variables (EIV) problem. Moreover, the use of finite difference methods to calculate these derivatives ensures that the errors are strongly correlated between pixels. Total least squares (TLS) has often been used to address this EIV problem. However, its application in this context is flawed as TLS implicitly assumes that the errors between neighborhood pixels are independent. In this paper, a new optical flow estimation method (EIVM) is formulated to properly treat the EIV problem in optical flow. EIVM is based on Sprent's (1966) procedure which allows the incorporation of a general EIV model in the estimation process. In EIVM, the neighborhood size acts as a smoothing parameter. Due to the weights in the EIVM objective function, the effect of changing the neighborhood size is more complex than in other local model methods such as Lucas and Kanade (1981). These weights, which are functions of the flow estimate, can alter the effective size and orientation of the neighborhood. In this paper, we also present a data-driven method for choosing the neighborhood size based on Stein's unbiased risk estimators (SURE)

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 10 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.