By Topic

Automatic image segmentation by integrating color-edge extraction and seeded region growing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianping Fan ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; D. K. Y. Yau ; A. K. Elmagarmid ; W. G. Aref

We propose a new automatic image segmentation method. Color edges in an image are first obtained automatically by combining an improved isotropic edge detector and a fast entropic thresholding technique. After the obtained color edges have provided the major geometric structures in an image, the centroids between these adjacent edge regions are taken as the initial seeds for seeded region growing (SRG). These seeds are then replaced by the centroids of the generated homogeneous image regions by incorporating the required additional pixels step by step. Moreover, the results of color-edge extraction and SRG are integrated to provide homogeneous image regions with accurate and closed boundaries. We also discuss the application of our image segmentation method to automatic face detection. Furthermore, semantic human objects are generated by a seeded region aggregation procedure which takes the detected faces as object seeds

Published in:

IEEE Transactions on Image Processing  (Volume:10 ,  Issue: 10 )