Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wall, C. ; Dept. of Otology, Harvard Med. Sch., Boston, MA, USA ; Weinberg, M.S. ; Schmidt, P.B. ; Krebs, D.E.

A prototype balance prosthesis has been made using miniature, high-performance inertial sensors to measure lateral head tilt and vibrotactile elements mounted on the body to display head tilt to the user. The device has been used to study the feasibility of providing artificial feedback of head tilt to reduce postural sway during quiet standing using six healthy subjects. Two vibrotactile display schemes were used: one in which the individual vibrating elements, called tactors, were placed on the shoulders (shoulder tactors); another in which columns of tactors were placed on the right and left sides of the trunk (side tactors). Root-mean-square head-tilt angle (Tilt) and center of pressure displacement (Sway) were measured for normal subjects standing in a semi-tandem Romberg position with eyes closed, under four conditions: no balance aids; shoulder tactors; side tactors; and light touch. Compared with no balance aids, the side tactors significantly reduced Tilt (35%) and Sway (33%). Shoulder tactors also significantly reduced Tilt (44%) and Sway (17%). Compared with tactors, light touch resulted in less Sway, but more Tilt. The results suggest that healthy normal subjects can reduce their lateral postural sway using head tilt information as provided by a vibrotactile display. Thus, further testing with balance-impaired subjects is now warranted.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:48 ,  Issue: 10 )