By Topic

A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry [and application to blood flow/pressure data]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng Lu ; Dept. of Electr. Eng., City Univ. of New York, NY, USA ; Ki Hwan Ju ; K. H. Chon

A linear and nonlinear autoregressive (AR) moving average (MA) (ARMA) identification algorithm is developed for modeling time series data. The new algorithm is based on the concepts of affine geometry in which the salient feature of the algorithm is to remove the linearly dependent ARMA vectors from the pool of candidate ARMA vectors. For noiseless time series data with a priori incorrect model-order selection, computer simulations show that accurate linear and nonlinear ARMA model parameters can be obtained with the new algorithm. Many algorithms, including the fast orthogonal search (FOS) algorithm, are not able to obtain correct parameter estimates in every case, even with noiseless time series data, because their model-order search criteria are suboptimal. For data contaminated with noise, computer simulations show that the new algorithm performs better than the FOS algorithm for MA processes, and similarly to the FOS algorithm for ARMA processes. However, the computational time to obtain the parameter estimates with the new algorithm is faster than with FOS. Application of the new algorithm to experimentally obtained renal blood flow and pressure data show that the new algorithm is reliable in obtaining physiologically understandable transfer function relations between blood pressure and flow signals.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:48 ,  Issue: 10 )