By Topic

Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Basdogan ; Lab. for Human & Machine Haptics, MIT, Cambridge, MA, USA ; C. -H. Ho ; M. A. Srinivasan

We develop a computer-based training system to simulate laparoscopic procedures in virtual environments for medical training. The major hardware components of our system include a computer monitor to display visual interactions between 3D virtual models of organs and instruments together with a pair of force feedback devices interfaced with laparoscopic instruments to simulate haptic interactions. We simulate a surgical procedure that involves inserting a catheter into the cystic duct using a pair of laparoscopic forceps. This procedure is performed during laparoscopic cholecystectomy to search for gallstones in the common bile duct. Using the proposed system, the user can be trained to grasp and insert a flexible and freely moving catheter into the deformable cystic duct in virtual environments. The associated deformations are displayed on the computer screen and the reaction forces are fed back to the user through the force feedback devices. A hybrid modeling approach was developed to simulate the real-time visual and haptic interactions that take place between the forceps and the catheter, as well as the duct; and between the catheter and the duct

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:6 ,  Issue: 3 )