By Topic

Design, fabrication, and evaluation of a new haptic device using a parallel mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jungwon Yoon ; Dept. of Mechatronics, Kwangju Inst. of Sci. & Technol., South Korea ; Ryu, J.

This paper presents design, fabrication, and evaluation of a new 6-DOF haptic device for interfacing with virtual reality by using a parallel mechanism. The mechanism is composed of three pantograph mechanisms that are driven by ground-fixed servomotors, three spherical joints between the top of the pantograph mechanisms and the connecting bars, and three revolute joints between the connecting bars and a mobile joystick handle. Forward and inverse kinematic analyses are performed and the Jacobian matrix is derived. Performance indexes such as global payload index, global conditioning index, translation and orientation workspaces, and sensitivity are evaluated to find optimal parameters in the design stage. The proposed haptic mechanism has better load capability than those of the pre-existing haptic mechanisms due to the fact that the motors are fixed at the base. It has also a wider orientation workspace mainly due to a RRR-type spherical joint. A control method is presented with gravity compensation and force feedback by a force/torque sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, the dynamic performance is evaluated for force characteristics. Virtual wall simulation with the developed haptic device is demonstrated

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:6 ,  Issue: 3 )