Cart (Loading....) | Create Account
Close category search window
 

Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhanqing Li ; Canada Centre for Remote Sensing, Ottawa, Ont., Canada ; Khananian, A. ; Fraser, R.H. ; Cihlar, J.

Satellite-based remote sensing techniques were developed for identifying smoke from forest fires. Both artificial neural networks (NN) and multithreshold techniques were explored for application with imagery from the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. The NN was designed such that it does not only classify a scene into smoke, cloud, or clear background, but also generates continuous outputs representing the mixture portions of these objects. While the NN approach offers many advantages, it is time consuming for application over large areas. A multithreshold algorithm was thus developed as well. The two approaches may be employed separately or in combination depending on the size of an image and smoke conditions. The methods were evaluated in terms of Euclidean distance between the outputs of the NN classification, using error matrices, visual inspection, and comparisons of classified smoke images with fire hot spots. They were applied to process daily AVHRR images acquired across Canada. The results obtained in the 1998 fire season were analyzed and compared with fire hot spots and TOMS-based aerosol index data. Reasonable correspondence was found, but the signals of smoke detected by TOMS and AVHRR are quite different but complementary to each other. In general, AVHRR is most sensitive to low dense smoke plumes located near fires, whereas smoke detected by TOMS is dispersed, thin, elevated, and further away from fires

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 9 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.