By Topic

Blind channel identification: subspace tracking method without rank estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohua Li ; Dept. of Electr. Eng., State Univ. of New York, Binghamton, NY, USA ; Fan, H.H.

Subspace (SS) methods are an effective approach for blind channel identification. However, these methods also have two major disadvantages: 1) They require accurate channel length estimation and/or rank estimation of the correlation matrix, which is difficult with noisy channels, and 2) they require a large amount of computation for the singular value decomposition (SVD), which makes it inconvenient for adaptive implementation. Although many adaptive subspace tracking algorithms can be applied, the computational complexity is still O(m3), where m is the data vector length. In this paper, we introduce new recursive subspace algorithms using ULV updating and successive cancellation techniques. The new algorithms do not need to estimate the rank of the correlation matrix. Furthermore, the channel length can be overestimated initially and be recovered at the end by a successive cancellation procedure, which leads to more convenient implementations. The adaptive algorithm has computations of O(m2 ) in each recursion. The new methods can be applied to either the single user or the multiuser cases. Simulations demonstrate their good performance

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 10 )