By Topic

Independent component analysis and (simultaneous) third-order tensor diagonalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. de Lathauwer ; ESAT, Katholieke Univ., Leuven, Belgium ; B. de Moor ; J. Vandewalle

Comon's (1994) well-known scheme for independent component analysis (ICA) is based on the maximal diagonalization, in a least-squares sense, of a higher-order cumulant tensor. In a previous paper, we proved that for fourth-order cumulants, the computation of an elementary Jacobi rotation is equivalent to the computation of the best rank-1 approximation of a fourth-order tensor. In this paper, we show that for third-order tensors, the computation of an elementary Jacobi rotation is again equivalent to a best rank-1 approximation; however, here, it is a matrix that has to be approximated. This favorable computational load makes it attractive to do “something third-order-like” for fourth-order cumulant tensors as well. We show that simultaneous optimal diagonalization of “third-order tensor slices” of the fourth-order cumulant is a suitable strategy. This “simultaneous third-order tensor diagonalization” approach (STOTD) is similar in spirit to the efficient JADE-algorithm

Published in:

IEEE Transactions on Signal Processing  (Volume:49 ,  Issue: 10 )