Cart (Loading....) | Create Account
Close category search window
 

Cramer-Rao lower bounds for QAM phase and frequency estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rice, F. ; Cooperativre Res, Center for Sensor Signal & Inf. Processing, South Australia Univ, Mawson Lakes, SA, Australia ; Cowley, B. ; Moran, B. ; Rice, M.

In this paper, we present the true Cramer-Rao lower bounds (CRLBs) for the estimation of phase offset for common quadrature amplitude modulation (QAM), PSK, and PAM signals in AWGN channels. It is shown that the same analysis also applies to the QAM, FSK, and PAM CRLBs for frequency offset estimation. The ratio of the modulated to the unmodulated CRLBs is derived for all QAM, PSK, and PAM signals and calculated for specific cases of interest. This is useful to determine the limiting performance of synchronization circuits for coherent receivers without the need to simulate particular algorithms. The hounds are compared to the existing true CRLBs for an unmodulated carrier wave (CW), BPSK, and QPSK. We investigated new and existing QAM phase estimation algorithms in order to verify the new phase CRLB. This showed that new minimum distance estimator performs close to the QAM bound and provides a large improvement over the power law estimator at moderate to high signal-to-noise ratios

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.