By Topic

Mixture conditional estimation using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nasab, N.M. ; Sch. of Dentistry, Indiana Univ., Indianapolis, IN, USA ; Analoui, M.

There are several methods for analyzing and estimating parameters for mixture models. These approaches seek to optimize various aspects of mixture model estimation, such as accuracy and computation cost. We present a new approach for estimating parameters of a Gaussian mixture model by genetic algorithms (GA). GA are adaptive search techniques designed to find near-optimal solutions of large-scale optimization problems with multiple local maxima. It is shown that using GA can find mixture model parameters accurately and efficiently for noisy and noiseless data sets

Published in:

Signal Processing and its Applications, Sixth International, Symposium on. 2001  (Volume:2 )

Date of Conference: