By Topic

Cooperative updating in the Hopfield model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Munehisa, T. ; Fac. of Eng., Yamanashi Univ., Kofu, Japan ; Kobayashi, M. ; Yamazaki, H.

We propose a new method for updating units in the Hopfield model. With this method two or more units change at the same time, so as to become the lowest energy state among all possible states. Since this updating algorithm is based on the detailed balance equation, convergence to the Boltzmann distribution is guaranteed. If our algorithm is applied to finding the minimum energy in constraint satisfaction and combinatorial optimization problems, then there is a faster convergence than those with the usual algorithm in the neural network. This is shown by experiments with the travelling salesman problem, the four-color problem, the N-queen problem, and the graph bi-partitioning problem. In constraint satisfaction problems, for which earlier neural networks are effective in some cases, our updating scheme works fine. Even though we still encounter the problem of ending up in local minima, our updating scheme has a great advantage compared with the usual updating scheme used in combinatorial optimization problems. Also, we discuss parallel computing using our updating algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 5 )