Cart (Loading....) | Create Account
Close category search window
 

Efficient training of RBF neural networks for pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lampariello, F. ; Istituto di Analisi dei Sistemi ed Inf., CNR, Rome, Italy ; Sciandrone, M.

The problem of training a radial basis function (RBF) neural network for distinguishing two disjoint sets in Rn is considered. The network parameters can be determined by minimizing an error function that measures the degree of success in the recognition of a given number of training patterns. In this paper, taking into account the specific feature of classification problems, where the goal is to obtain that the network outputs take values above or below a fixed threshold, we propose an approach alternative to the classical one that makes use of the least-squares error function. In particular, the problem is formulated in terms of a system of nonlinear inequalities, and a suitable error function, which depends only on the violated inequalities, is defined. Then, a training algorithm based on this formulation is presented. Finally, the results obtained by applying the algorithm to two test problems are compared with those derived by adopting the commonly used least-squares error function. The results show the effectiveness of the proposed approach in RBF network training for pattern recognition, mainly in terms of computational time saving

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 5 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.