By Topic

Theoretical properties of recursive neural networks with linear neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Bianchini ; Dipt. di Ingegneria dell'Inf., Siena Univ. ; M. Gori

Recursive neural networks are a powerful tool for processing structured data, thus filling the gap between connectionism, which is usually related to poorly organized data, and a great variety of real-world problems, where the information is naturally encoded in the relationships among the basic entities. In this paper, some theoretical results about linear recursive neural networks are presented that allow one to establish conditions on their dynamical properties and their capability to encode and classify structured information. A lot of the limitations of the linear model, intrinsically related to recursive processing, are inherited by the general model, thus establishing their computational capabilities and range of applicability. As a byproduct of our study some connections with the classical linear system theory are given where the processing is extended from sequences to graphs

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )