Cart (Loading....) | Create Account
Close category search window
 

Computationally efficient nonlinear edge preserving smoothing of n-D medical images via scale-space fingerprint analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reutter, B.W. ; Center for Functional Imaging, Lawrence Berkeley Lab., CA, USA ; Algazi, V.R. ; Huesman, R.H.

Nonlinear edge preserving smoothing often is performed prior to medical image segmentation. The goal of the nonlinear smoothing is to improve the accuracy of the segmentation by preserving changes in image intensity at the boundaries of structures of interest, while smoothing random variations due to noise id the interiors of the structures. Methods include median filtering and morphology operations such as gray scale erosion and dilation, as well as spatially varying-smoothing driven by local contrast measures. Rather than irreversibly altering the image data prior to segmentation, the approach described here has the potential to unify nonlinear edge preserving smoothing with segmentation based on differential edge detection at multiple scales. The analysis of n-D image data is decomposed into independent 1-D problems that can be solved quickly. Smoothing in various directions along 1-D profiles through the n-D data is driven by a measure of local structure separation, rather than by a local contrast measure. Isolated edges are preserved independent of their contrast; given an adequate contrast to noise ratio

Published in:

Nuclear Science Symposium Conference Record, 2000 IEEE  (Volume:2 )

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.