By Topic

Stabilization of linear systems with limited information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elia, N. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Mitter, S.K.

We show that the coarsest, or least dense, quantizer that quadratically stabilizes a single input linear discrete time invariant system is logarithmic, and can be computed by solving a special linear quadratic regulator problem. We provide a closed form for the optimal logarithmic base exclusively in terms of the unstable eigenvalues of the system. We show how to design quantized state-feedback controllers, and quantized state estimators. This leads to the design of hybrid output feedback controllers. The theory is then extended to sampling and quantization of continuous time linear systems sampled at constant time intervals. We generalize the definition of density of quantization to the density of sampling and quantization in a natural way, and search for the coarsest sampling and quantization scheme that ensures stability. Finally, by relaxing the definition of quadratic stability, we show how to construct logarithmic quantizers with only finite number of quantization levels and still achieve practical stability of the closed-loop system

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 9 )