By Topic

Real-time interaction between a neuromorphic electronic circuit and the spinal cord

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Jung ; Dept. of Electr. & Comput. Eng., Kentucky Univ., Lexington, KY, USA ; E. J. Brauer ; J. J. Abbas

We present a novel demonstration of real-time dynamic interaction between an oscillatory spinal cord (isolated lamprey nervous system) and electronic hardware that mimics the spinal motor pattern generating circuitry. The spinal cord and the neuromorphic circuit were interfaced in unidirectional and bidirectional modes. Bidirectional coupling resulted in stable, persistent oscillations. This experimental platform offers a unique paradigm to examine the intrinsic dynamics of neural circuitry. The neuromorphic analog very large scale integration (aVLSI) design and real-time capabilities of this approach may provide a particularly powerful means of restoring complex neuromotor function using neuroprostheses.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:9 ,  Issue: 3 )