By Topic

Millimeter-wave generation and digital modulation in an InGaAs-InP heterojunction phototransistor: model and experimental characterization of dynamics and noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Bilenca ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; J. Lasri ; B. Sheinman ; G. Eisenstein
more authors

This paper describes the use of an InGaAs-InP photoheterojunction bipolar transistor (photo-HBT) for millimeter-wave generation and digital modulation. Optical mixing of two coherent signals generates the carrier, and a digital drive signal to the base is used for the modulation. We describe an advanced large signal model of the photo-HBT that takes into account distributed effects at high frequencies and all noise sources, including optical amplifier noise and noise correlations due to the high operation frequency and the nonlinear mixing processes. The model enables one to predict carrier-to-noise ratio dependence on frequency, optical power, and the transistor operating point. Frequency- and time-domain responses of the modulated millimeter- wave carrier and bit error rates are also calculated. Experiments at 10 and 45 GHz with modulation rates ranging between 50 Mb/s and 2.5 Gb/s were performed, and a superb fit to the calculated responses is found

Published in:

Journal of Lightwave Technology  (Volume:19 ,  Issue: 9 )