By Topic

Quasi-phase-matched (QPM) difference frequency generation in a mirrorless counterpropagating configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qin, Y.Q. ; CORECOM, Milan, Italy ; Pietralunga, S.M. ; Martinelli, M.

We present a theoretical analysis of second-order nonlinear difference frequency generation (DFG) in a generalized mirrorless quasi-phase-matching (QPM) frame, aimed at a comparison of counterpropagating DFG configuration (CDFG) to other DFG schemes, in view of all-optical processing applications. Field nonlinear coupling equations have been numerically solved under the hypothesis of phase-matched interaction. The evolution of propagating fields within the material and the wavelength conversion efficiency have been calculated in dependence of operating parameters. The increased complexity in the evolution of amplitude and phase for fields interacting in CDFG with respect to forward-propagating DFG (FDFG) is at the basis of a dramatic increase in the wavelength conversion efficiency under particular settings of device parameters.

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 9 )