Cart (Loading....) | Create Account
Close category search window
 

Bit error probability reduction in direct detection optical receivers using RZ coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pauer, M. ; Vienna Univ. of Technol., Austria ; Winter, P.J. ; Leeb, W.R.

We analyze the bit error probability reduction for direct detection ON-OFF keying optical receivers using return-to-zero (RZ) coding instead of the nonreturn-to-zero (NRZ) format. For the same average optical power, RZ is shown to outperform NRZ, even when employing the same receiver bandwidth. Results are given for receivers whose noise variance is i) dominated by a signal-independent term (e.g., simple pin diode receivers), ii) dominated by a signal-dependent term (e.g., optically preamplified receivers), and iii) made up of two equally important contributions [e,g,, avalanche photodiode (APD) receivers]. Based on semianalytic simulations including intersymbol interference, we show that the achievable RZ sensitivity gain is typically less for dominating signal-independent noise than for dominating signal-dependent noise, where it amounts to about 3 dB. We also quantitatively discuss the influence of the optical pulse shape on the achievable RZ coding gain, and show that finite extinction ratios can significantly reduce that gain, especially when the RZ signals are produced by direct-modulation methods

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 9 )

Date of Publication:

Sep 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.