By Topic

Combined MMSE interference suppression and turbo coding for a coherent DS-CDMA system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kai Tang ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; Milstein, L.B. ; Siegel, P.H.

The performance of a turbo-coded code division multiaccess system with a minimum mean-square error (MMSE) receiver for interference suppression is analyzed on a Rayleigh fading channel. In order to accurately estimate the performance of the turbo coding, two improvements are proposed on the conventional union bounds: the information of the minimum distance of a particular turbo interleaver is used to modify the average weight spectra, and the tangential bound is extended to the Rayleigh fading channel. Theoretical results are derived based on the optimum tap weights of the MMSE receiver and maximum-likelihood decoding. Simulation results incorporating iterative decoding, RLS adaptation, and the effects of finite interleaving are also presented. The results show that in the majority of the scenarios that we are concerned with, the MMSE receiver with a rate-1/2 turbo code will outperform a rate-1/4 turbo code. They also show that, for a bit error rate lower than 10-3, the capacity of the system is increased by using turbo codes over convolutional codes, even with small block sizes

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 9 )