By Topic

Narrow-waisted Gaussian beam discretization for short-pulse radiation from one-dimensional large apertures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Galdi, V. ; Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA ; Felsen, L.B. ; Castanon, D.A.

We develop a Gabor-based Gaussian beam (GB) algorithm for representing two-dimensional (2-D) radiation from finite aperture distributions with short-pulse excitation in the time domain (TD). The work extends previous results using 2-D frequency-domain (FD) narrow-waisted Gaussian beams. The FD algorithm evolves from the rigorous Kirchhoff integration over the aperture distribution, which is then parameterized via the discrete Gabor basis and evaluated asymptotically for high frequencies to furnish the GB propagators to the observer. The TD results are obtained by Fourier inversion from the FD and yield pulsed beams (PB). We describe the resulting TD algorithm for several aperture distributions, ranging from simple linearly phased (linear delay) to arbitrary time delay profiles; the latter accommodate the important case of focusing TD aperture fields. For modulated pulses with Gaussian envelopes, we compute accurate closed form analytic solutions, which have been calibrated against numerical reference data. Our results confirm that the previously established utility of the Gabor-based narrow-waisted FD-GB algorithm for radiation from distributed apertures remains intact in the TD

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:49 ,  Issue: 9 )