By Topic

Using association rules as texture features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. A. Rushing ; Intel Corp., Santa Clara, CA, USA ; H. S. Ranganath ; T. H. Hinke ; S. J. Graves

A new type of texture feature based on association rules is proposed in this paper. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. Association rules capture both structural and statistical information, and automatically identifies the structures that occur most frequently and relationships that have significant discriminative power. Methods for classification and segmentation of textured images using association rules as texture features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. It is shown that association rule features can distinguish texture pairs with identical first, second, and third order statistics, and texture pairs that are not easily discriminable visually

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:23 ,  Issue: 8 )