By Topic

N-dimensional tensor voting and application to epipolar geometry estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Keung Tang ; Comput. Sci. Dept., Hong Kong Univ. of Sci. & Technol., Clear Water Bay, China ; Medioni, G. ; Mi-Suen Lee

We address the problem of epipolar geometry estimation by formulating it as one of hyperplane inference from a sparse and noisy point set in an 8D space. Given a set of noisy point correspondences in two images of a static scene without correspondences, even in the presence of moving objects, our method extracts good matches and rejects outliers. The methodology is novel and unconventional, since, unlike most other methods optimizing certain scalar, objective functions, our approach does not involve initialization or any iterative search in the parameter space. Therefore, it is free of the problem of local optima or poor convergence. Further, since no search is involved, it is unnecessary to impose simplifying assumption to the scene being analyzed for reducing the search complexity. Subject to the general epipolar constraint only, we detect wrong matches by a computation scheme, 8D tensor voting, which is an instance of the more general N-dimensional tensor voting framework. In essence, the input set of matches is first transformed into a sparse 8D point set. Dense, 8D tensor kernels are then used to vote for the most salient hyperplane that captures all inliers inherent in the input. With this filtered set of matches, the normalized eight-point algorithm can be used to estimate the fundamental matrix accurately. By making use of efficient data structure and locality, our method is both time and space efficient despite the higher dimensionality. We demonstrate the general usefulness of our method using example image pairs for aerial image analysis, with widely different views, and from nonstatic 3D scenes. Each example contains a considerable number of wrong matches

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 8 )