By Topic

Mechanical property evaluation and failure analysis of cantilevered LIGA nickel microposts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Stephens, L.S. ; Dept. of Mech. Eng., Kentucky Univ., Lexington, KY, USA ; Kelly, K.W. ; Simhadri, S. ; McCandless, A.B.
more authors

An experimental apparatus has been built to measure the elastic modulus and bending strength (modulus of rupture) of LIGA nickel posts. The apparatus uses the static cantilever beam bending approach to measure mechanical properties in a direction parallel to the growth direction. Experimental results are presented for two sets of largely identical posts constructed using an overplating method. One set was electroplated using a Watts bath, and the other set was electroplated using a sulfamate bath. For the Watts bath, the measured modulus of elasticity was slightly lower than that of bulk nickel (182 GPa), while, for the sulfamate bath, it was approximately half (93 GPa). The strength properties of the two sets of posts also differ dramatically. Microhardness measurements, Focused Ion Beam (FIB) images of grain structure, and scanning electron microscopy (SEM) micrographs of failure regions are used to further characterize and explain the differences in the results. This integrated testing approach yields a consistent set of data regarding material properties, grain size/structure and failure mechanisms. Potential sources of experimental error are also identified and improvements in experiment design are suggested to reduce these errors

Published in:

Microelectromechanical Systems, Journal of  (Volume:10 ,  Issue: 3 )